quinta-feira, 1 de novembro de 2018


a supercondutividade no sistema categorial Graceli


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação [categorias de Graceli], temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG]..



EGAP = (7/2) k TC

x

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl

C = A e-b/kT

x

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


A SUPERCONDUTIVIDADE

A TEORIA BCS
Só após 46 anos da descoberta de Onnes é que surgiu uma explicação bem sucedida do fenômeno da supercondutividade. Em 1957, os físicos John Bardeen, Leon Cooper (o mesmo dos pares) e Robert Scrieffer apresentaram um modelo teórico que concordava muito bem com as observações experimentais nos supercondutores. Esse modelo ficou conhecido por Teoria BCS, das iniciais dos autores, e lhes rendeu o Prêmio Nobel de Física de 1972. Bardeen já recebera outro Nobel pela invenção do transistor e, até hoje, foi o único a receber dois prêmios de Física.

J. Bardeen, L. Cooper e R. Schrieffer
A idéia central dessa teoria é a formação de pares de elétrons, os pares de Cooper. Como vimos, a associação de elétrons, apesar da repulsão elétrica entre eles, é possibilitada por vibrações da rede, os "fônons". Mas, resta explicar porque os pares de Cooper conseguem se deslocar sem impedimento pela rede cristalina, enquanto os elétrons individuais sofrem resistência.A teoria BCS, analisando detalhadamente o acoplamento entre elétrons e fônons, mostra que os elétrons dos pares de Cooper têm energia ligeiramente inferior à energia dos elétrons individuais não pareados. Em termos técnicos, diz-se que existe um "gap" de energia separando os elétrons emparelhados dos elétrons normais,
Quando um elétron, em um condutor normal, interage com os átomos da rede, dá-se uma troca de energia, como costuma acontecer em toda interação. Na interação, o elétron pode transferir energia para os átomos, como uma bola de sinuca se chocando com outra, e, no processo, os átomos são "excitados". Isto é, a energia da interação gera uma vibração nos átomos da rede. Foi o que vimos em uma das animações da seção anterior. Isso provoca o aquecimento do material, resultando em uma resistência ao deslocamento dos elétrons livres. No entanto, se dois elétrons já estiverem ligados em um par de Cooper, essa interação com outros átomos da rede só será possível se a energia trocada for maior que a energia do "gap". Quando a temperatura é alta, há muita disponibilidade de energia térmica para isso, e os pares de Cooper nem conseguem se formar, ou, quando se formam, são logo aniquilados. No entanto, baixando-se a temperatura, pode-se chegar a um valor no qual a energia disponível para trocas térmicas é menor que a energia do "gap". Quando isso acontece, alguns pares de Cooper não são aniquilados pela agitação térmica. Mesmo que os elétrons de um par se choquem com átomos da rede, não haverá troca de energia entre eles. Em processos quânticos, como são esses choques, só pode haver troca de energia se o "gap" for vencido. Não pode haver troca parcial de energia. O choque, se houver, será "elástico", sem perda de energia pelos elétrons.
A temperatura na qual o material fica supercondutor, chamada de temperatura crítica, TC, é uma medida do tamanho do "gap" de energia. Em um supercondutor típico, do tipo conhecido até a década de 80, a energia do "gap" era bem pequena, da ordem de 0,01 eletrons-volt. Por isso, as temperaturas críticas desses supercondutores são tão baixas.
O grande sucesso da teoria BCS deveu-se ao excelente ajuste entre suas previsões e as observações experimentais.
1) A existência dos pares de Cooper depende de uma interação entre os elétrons e os átomos da rede, como vimos. Para testar essa hipótese, foram feitas medidas da temperatura crítica em materiais onde alguns átomos eram trocados por seus isótopos mais leves ou pesados. Se, realmente, os fônons estiverem envolvidos na formação dos pares, essa troca deve afetar a temperatura crítica de transição ao estado supercondutor.
O gráfico ao lado mostra o resultado obtido com o mercúrio, cuja supercondutividade foi descoberta por Onnes. O mercúrio tem vários isótopos, com pesos entre 203 e 198. Como vemos, a temperatura crítica cai para isótopos mais pesados, confirmando a teoria que prevê uma dependência com o inverso da raiz da massa atômica.

Variação da temperatura crítica com a massa isotópica
2) A teoria BCS prevê que o "gap" de energia controla o valor da temperatura crítica. Quanto maior o "gap", maior a temperatura de transição. A previsão da teoria, obtida de uma análise rigorosa da interação elétron-fônon, é que essa relação deve ser:
EGAP = (7/2) k TC
onde k é a chamada constante Boltzmann.
A experiência concorda de forma excelente com essa previsão, como mostra o gráfico ao lado. A linha reta é a previsão teórica (equação acima) e os pontos mostram a energia do "gap" medida para vários supercondutores.

Energia do "gap" vs temperatura crítica
Segundo a teoria BCS, o calor específico de um supercondutor deve crescer exponencialmente, ao se aproximar da temperatura crítica. Isto é:
C = A e-b/kT
onde A e b são constantes que dependem do material supercondutor.
A figura ao lado mostra o resultado experimental para o Vanádio, cuja temperatura crítica é 5,4 K. Os pontos são as medidas experimentais e a linha contínua é a previsão da teoria. A inclinação dessa reta, por sinal, permite calcular a energia do "gap", que, para o Vanádio, é de 1,3 meV, concordando bem com as experiências.

Calor específico do vanádio em função do inverso da temperatura absoluta
Portanto, a teoria BCS teve enorme sucesso, explicando muito bem o comportamento dos materiais supercondutores conhecidos até a década de 80 do século passado.
Mas, em 1986, um novo tipo de supercondutor surgiu na praça e a história se modificou. É o que veremos a seguir.